International Workshop
on Advanced Display
Materials

FAPbBr₃ as a Potential Candidate for Resistive Random Access Memory (ReRAM)

Memoona Qammar and Jonathan E. Halpert*‡

Department of Chemistry, Hong Kong University of Science and Technology (HKUST), Clear Water Bay Road, Kowloon, Hong Kong

Introduction

- Internet of things needs a new computing system with high-speed operation, low power consumption, and high scalability
- Organic halide perovskite memristors show strong hysteresis, simple structure, easy synthesis and unique optical and electronic properties
- The development for perovskites is hampered by material instability and susceptibility to moisture, oxygen and heat

Experimental

- Synthesis: Solution synthesis
- Fabrication: Spin-coating
- Electrode Deposition: Thermal evaporation
- Device structure: Metal—Insulator-Metal

Optical Properties Crystal structure Analysis

UV-VIS and PL spectra of FAPbBr₃

X-ray diffraction analysis

Morphological analysis

Scanning electron and atomic force microscopic image

Device Characterization

50

Device structure

ITO/FAPbBr₃/Ag

SEM cross-section and the real device

0.01 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 LRS LRS LRS HRS — 1 — 10 — 20 — 30 — 40

Semi log IV plot, switching between low current and high current state

Voltage (V)

HRS and LRS for 50 cycles

Conclusion and Future Prospects

Crystalline, uniform and smooth FAPBr₃ thin films having cubic structure and 2.27 eV band gap energy were formed successfully

1E-9

- As a result of DC sweep from $-2.5 \text{ V} \rightarrow +2.0 \text{ V}$ the devices showed bipolar switching with electroforming voltage ranging from 0.8 to 1.1 V
- The endurance of devices is 50 cycles and on/off ratio is around 10²
- The HRS is fluctuating more as compared to LRS
- Bipolar switching, environmental and thermal stability and the IV results make this material potential candidate for future memristors

■ References

- Zhang Y. et al. ACS Energy Letters (2018): 1808-1814.
- Zeng F. et al. ACS Applied Materials & Interfaces (2020): 23094-23101.

■ Acknowledgement

J.E.H. and M. Q. acknowledge the funding from Hong Kong University of Science and Technology (HKUST), School of Science (SSCI), and Department of Chemistry (CHEM).

